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1. Introduction.

Let {W(t): 0 < t < -} be a Brownian motion or a Wiener process on (0,.P).

We define the functions {fT: T 20}

fT: [0,1] x Q -*R

by

fT(t.'w) = W(Tt,w) (2T log logT)-1/2
.

Let K be the subset of absolutely continuous functions x E C[O,1] such that

x(0) = 0

and

1. 2,F; {x(t)} dt 1.

The functional law of the iterated logarithm (F.L.I.L.) states

Theorem. (Strassen 1964) W.p.l. f n; n C IN} is relatively compact with limit

set K.

Two results about the rate of convergence are known.

P(d,(f n.K) 2 (log log n)
-a i.o.) = 1 according as a 1.

0 a ( 1/2,

(Bolthausen 1978) and the following sharpening of the foregoing result.

1 a > 2/3,

P(d(fTK) 2 (log log T)
- a  i.o,) = according as a > 2/3.

0 a < 2/3.

(Grill 1987). The distance d. is the usual distance in C[0.1] and will be
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defined in section 2.

The main result of this paper will be an improvement of this last result.

Theorem. Let {fn} and K be defined as above. Then

1 a< 0,
P(d,(fn.K) P6(n) i.o.) = according as

where

'P6(n) = (1 +6)(lgn)l n)-2/3

A simple proof of Strassen's F.L.I.L. is given in Chover (1967). A

detailed proof can be found in the book of Freedman (1971). An extensive

discussion of the different formulations of functional laws of the iterated

logarithm is given in Taqqu and Czado (1985). In section 5 we compare the

approach in this paper with several other approaches.

2. Some results of Gaussian processes.

The set K in Strassen's F.L.I.L. is the unit ball of the Hilbert space

1* 2
H = {f: [0,1] IR. f(t) = f(s)ds, S 0 {f(s) ds <

with inner product

(f.g) = (s)g(s)ds, f.g C H.

The sequence {qp n=.,1 ....}, where

= i(2n+l) sin((2n+l)wt/2) 0 t 1.

is a complete orthonormal system in H. Let (Xn: n=O,l .... } be a sequence of

i.i.d. N(0,1) distributed random variables. The Karhunen-Lo~ve expansion of

the Brownian motion {W(t): 0 t 1} states
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(2.1) W(t) = - Xnn(t).
n=O

For more details see Lo~ve (1963) or Jain and Marcus (1978). In theorem 3.3 of

the last paper they prove that the expansion (2.1) converges uniformly a.s.

The space H is also used by Kuelbs and LePage (1973) in order to prove

functional laws.

In our theorem we use two norms. The sup norm in C[0,1]

1f1 = sup If(t)
O~t<l

and the norm in H

Hf i = { f; {(s)}2 ds}1 1 2

We have the following relation between these two norms

Hif lo, IlfllH .

The corresponding metrics are denoted by d. and d . For each natural number m

we define the (Gaussian) processes {Um(t): Ot~l) and {Vm(t): O~t~l} by

m-1
m (t) = I Xn'n(t)

n=O

and

Um(t) + V m(t) = W(t),

i.e.

Um(t) = I X nn(t).
n=m

Then we have

EUm(t) = EVm(t) = 0,

2 0 2 m-1 2
a (Um(t)) = 2 n2(t) and c' (VM(t)) I = P2(t)

n=m n--O
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In the case t=l we have for m -

2 -2 rn-i -2 2 -2
(2.2a) a(V(1)) = 2 I 4(2n+l) -2  1 - -2 + O(m)

n-O 7 m

and

(2.2b) a 2(U (1)) 2 + o(m )- 2 + ' -"(

wm

We also have

2 12 1 2 -1 X2
II VIIH = 2 2 Xn f0 cos {(2n+l)vt/2}dt = n

n-O n=O

Thus I VmH has a chi-square distribution with m degrees of freedom.

We note that U and V are independent Gaussian processes. There exists am m

rich literature on the maximum of Gaussian processes. See for example Berman

(1985). Talagrand (1988), Piterbarg and Prisjaznjuk (1978) and the references

in those papers. We shall not use the results out of one of these papers but

prove the following lemma. Because the processes U and Vm have such a nice

structure we give new proofs. (Of course making use of the ideas of the other

papers.) Note that the processes have no independent increments. It is easy

to see that the variance takes its maximum value for t=l. The processes will

reach their maximum near t=l, as we can conclude from the following lemma. In

this lemma we shall compare the tail of distribution of the maximum with the

tail of the distribution of the process at t=l.

Lemma 2.1. Let the Gaussian processes U and V be defined as above. Letm m

e > 0. Then we have for m,u -. and m = o(u)

(2.3.a) P( max Vm(t) > u) (1 + o(1))P(Vm (1) > u(l-a))

and

(2.3.b) P( max Um(t) > u) (1 + o(I)) P(U(1) > u(l-e)).

O~t~i



The distribution of the maximum of a Brownian motion is given by

(2.4) P( sup W(t) > u) = 2P(W(1) > u)
0 t~l

See Freedman (1971) corollary 29. Thus, for u -i--. we have

P( sup W(t) > u) - P(W(l) > u - u- log 2)

by application of the expansion

(2.5) P(W(1) > u) -~ (2r)- / u -1e-u 2/2 for u .

See Freedman (1971) lemma (4.a).

In (2.3.a) we have the trivial lower bound

(2.6) P(V m(1) > u) P( max V (t) > u) for all u.
Q~t~l m

Similarly for U

Proof of lemma 2.1.

Part a. The mean value theorem implies

- m- 1

Vmth = V (t) + -4 h I0 Xk cos{(2k+1)7r t+h~)

when nih is small. Divide the interval [0.1] in A- 1 (integer) intervals of

length A. Then we have

Pmax V (t) > u) 2 P( max V (t) > u)
0 t~l j=l JA~t (J+1)A

(2.7)

A- 1-1
I P(V m(JA) + max (V m(t) - V (JA)) > u).

J=-O JA~t (J+l)A
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We also have
rn-i

maex I Vm(t)-Vm(JA)J A h2 = Ixk1.
jA~t (j+l)A k_-O

Note that this (random) bound is independent of t and j. For A m small we can

apply the central limit theorem in order to obtain

(2.8) P( max V (t) > u) < P(Vm(JA) > u-eu) + rj
jA~t (J+I)A m

where the error rj is asymptotically small with respect to P(Vm(1) > u-eu) for

u -*w. Using (2.7). o2 (Vm(t) is maximal for t=l. (2.8) and (2.5) we obtain

P( max V (t) > u) A-Ipcv(1) > u-eu) + 2r

P(Vm(1) > u(1-2e)).

Part b. U (t) is an infinite series. We write

2rn-i 2/2

Um(t) = -(2k+l) Xk sin(2k+l) 1 t + Um2(t ) .m k=M 2 m

We have seen that a2(Um2(t)) cm-2 uniformly in t. Thus we obtain (uniformly

in t)

P(Um2 (t)I > ub) = o(PU (1) > ul-e))

for m,u -* -.

The further proof is similar to that of part a. 0

We apply the following asymptotic expansion for the right tail of the

chi-square distribution with increasing degrees of freedom.

Lemma 2.2. For m- coand m = o(x) for x-+- we have
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P( 2> x) = {l + o(l)} { m} - e yC e(-%m - l)log(xe/m)

Proof of Lemma 2.2.

The assertion follows easily after some calculus and the application of

Stirling's formula. 0

The following assertions are well-known for gamma distributions but we

shall only apply them for chi-square distributions.

Lemma 2.3.
Let X (resp. Y) be 2 (resp. k) distributed. X and Y are independent. Then

2a) X + Y has a n+m distribution

b) X + Y and X/(X + Y) are independent

c) X/(X + Y) has a B(, 2) distribution.

Proof.

See Rohatgi (1976) Section 5.3 Theorem 4 resp. Th. 6 and Th. 15. 0

Define the projection II of H onto the finite-dimensional subspace withm

base {M0 . .ml by

m-i
fl( nq ann(t))= I ann(t).

at nn n-O n

Thus we have

V =IW.m m

We use the notation Lx resp. L 2x for log x resp. log log x.

3. Lower bound.

Define the sequence nk = exp(kqp(k)) where w is slowly varying at infinity

and lim f(x) = . Then we have, for k - , nk/nk+1 - exp(-p(k)) -+ 0 and
n-m
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P((2nk+l L2nk+l) II W(nk-) 11. > e q O(nk))

<4P(luI > aOk)2L2nk+I (n k+I/nk))Yl

using (2.4) and the scaling property of a Brownian motion

O e 2 OP2 (#() -(k )LA-(

O(e -  0on L k (qo(nk)-l(L 2 nk)-'e-&(k)

by (2.5). We choose p(k) such that the summation of these probabilities

converges. For example take p(k) = 4/3 L 2k.

Now we define for k=1,2..... the sequence of functions f

fk [0,1] x fa -+

by

f*(t.w) = (2nk+lL 2nk+l)-{W((nk+l - nk)t + nkc) - W(nkw)}.

We easily see that fk(t) has the same distribution as (
2nk+lL 2nn+l)-%

(l-nk/nk+l)%W(nk+lt). We can write, for each k.

Oc

f(t) = j ,j *j(t) * {2L2 k+1} 11

where j-0,1...., are i.i.d. N(01) distributed random variables.

Remark that the random variables Xk,1 depend on k. Take mk = (L2nk) 
1 / 3 . Then

we have

(3.1) P(II I ff *H > I + ,b(n

= P(' mk > (2L2nk+l) (l+'p6nk))2 (1-nk/nk+l)-1)

which can be estimated using lemma 2.2. For 6 < 0 we have
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-TP(I I q *1 > I + *,J(nk)

Using the property that the increments of a Wiener process are Independent, the

Borel-Cantelli lemma implies that

P(II ITfkH > I + 6 (nk) i.o.) =1.

Therefore. w.p. 1 we have

Tifrf* f K i.o.
mfk

For Umk f k K the projection onto K is given by if IT f H f Thus

w.p. 1 we have

da fmkf  K) = ds( f* II1 I f 1 U fkl- 1 > ,5(n) i.o.

dQmkkH(mfwk 'm k H m.k k mk k H -1 Pn.) ..

Now we shall show that w.p. 1 we have, for 0 < 61 < 6. d0 (f k . K) > (1-6 1)'o(nk)

i.o. Similarly as above we can show that for 6 > 0

2 P(II Zkf* I1H > 1 + (1 + 6 )4o(nk)) < .

Then the Borel-Cantelli lemma implies

P(II i k H + (1+6)€o(nk) =

Define the events A k' k = 1,2.... by

(3.2) 1 + (1- 6 )1o(nk) II "mfk IH 1 + (1+ 6 )4o(nk)

or

2( - 1 -2 mk-l 2(2L2 nk)(1 + (1-6)Po(n k))2(1-n k nk+1 )  I: N 'Ij )  (2L 2nk ) •

j-o
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2  -1 -2
S+ (l+6)*o(n0)) (1 - nknk+l)

Using lemma 2.1. part a we have that, for estimating the right tail

probabilities of 11 lk f* II. , we may use the r.v.
mk-k

ii f(1) -JA -1 %A

The Cauchy-Schwarz inequality Implies

2  -1 mk-1  -1 iN-1( mfk(1))2 lnkkl) (Xk.J) 2 {Ln ~ }  I  V (1 o{))

j-o j-0

11 11 f *112 .a2 ( 1)nk k H •

where o2 (V (1)) is given in (2.2.a). The r.v. 1 f (1) has a normal

distribution with E 9 f,*(1)- 0 andmRkk

a2(C7 f,*C)) -- o(V (1)) (2 -1(,
Thek kin L~2 k+d ( kk

The vector (X.X has a mk-dimensional normal distributior.

There exists an orthogonal transformation P such that the first row vector of

PX becomes {fc(Vm(I)))- { I XJVJ(l1). It follows from lemma 2.3. part c

that

(3.3) {a2 (V(1))} - -1 - 2  2

has a B(A. m -% ) distribution and by lenon 2.3, part b is the r.v. given in

(3.3) Independent of 11 m m f 11
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Consider

P(, ,If f*,. > I - e A A =P f I > I-e.JA P(

P(B(A. m- A ) > 1- 1I)P(Ak)

for some positive a1 " With the estimate

-' -1S- An Ilog a-

P(B(%, nk - %) > 1-al) cmk e

for k -i o0 we obtain

.- P( I17 fl > 1 a A A
k m, k lW A k)

The Borel-Cantelli lemma implies that w.p.1 we have i.o.

11 f 11, * > 1- A 11 f *H 1+ (1-5),onk)"

Or, w.p. 1 we have i.o.

11 1f 11 > 1 - eA dH(UfkK)=11 mk "H 1 > (1-6)ion)
Nmk wd~rk~'K mfk 0 -

Next we want to conclude that w.p.l we have

d.(, C'mf*,K) > (1-651)Po~nl<)io

One may apply results from the theory of linear spaces. See, for example,

Banach (1932) chapter XI § 4 or IKdthe (1960).§ 26.4. We indicate a simple

proof using the structure of H and ii H.m

It is well-known that H is isometric isomorphic with e2 ' Let

M-I
e = (e 0 ... era1) e 90 with e (1) and 9 mf = I f J Then

17 mfl ) = if ej = (f.e)M. where (-.) is the inner product in IRm. Lemma 2.1
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implies that we may consider (fe)m instead of 119m f II00.

W.p.1 we have (9 f*,e) > 1 - a and mf[ > 1+(1-6)o(nk). We write
mk k  k me e k=H0 ) . T

T fk = ae + bd where d C U perpendicular to e (i.e. (ed)mk = 0). Thus

(11 .e) a > 1-a. Then we have

d k f K) ((1 k - H fi ke) mk

- (1-11 U f *IH1) a (e.e) > C1-61)Po n

To complete the proof we consider

P(II T f I > +(l- 6 )qo(nk) A 'I1 k - U f*1 > (oC )"m) %

- P(II U fk*H > l+Cl-6)oJPo~nk)PIlfk - U kf kl (,o(nk)/mk) )

because of the independence of Imk f and fk i f . Applying (3.1), lemma 2.2

and (2.3.b) we obtain

-7 P(II UI f I1 > l+(1-6)i(nk) A I~*- U infk * (a %n1 )/.) <
kkkk0 

> (4o(k)/mk))

Thus w.p.1 we have i.o.

II k f H >k)

and

SUmkf - fk 0W (,o(nk)/mk)"

One easily sees that for k sufficiently large

(4,o(nklm) < 1- 6,Po nk

k)/mk% 3 0ii 1
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4. Upper bound.

In this section we use the subsequences nk = exp(k/p(k)) where

4/3 1/3v(k) = (log k) and mk = (L2nk)1 . We write

P(d(f nkK) > P 6 (nk) -

P(d0(fnkK) > P6 (nk) A 11mkk f K) +

P(d,(fnkK) > P6J(nk) A U f nk 6 K n Kl(L 2nk)1 /6 ) +

P(dw(f nK) > P6 (nk) A k f nk  1  1 6 )

PIk + P2.k + P3,k"

The event in P3,k implies fnk C K for nk sufficiently large. This follows from

the following result.

Lemma 4.1. Let nk and mk be defined as above. Then

__% -1/6
sup sup IUm(t)l (2L2nk)- (L 2 nk) a.s.

mk<m~mk+l Oft<:

for k sufficiently large.

Proof. Using lemma 2.1.b we have

P( sup U (t) > % /2 (L2nk) /) (I+o(1))P(U > %r(l-e)(L 2nk) )
O~t~l ink

= 0((p(k)/k)T2 (2- )2/8 (Lk)"_) by (2.5).

The Borel-Cantelli lemma implies: w.p.1 for k sufficiently large
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sup (2L -"A fU Ct)! I (L2nk)-'6

mk+1-1

For mk < m imk+l we haveU (t) = XP (t) + U (t). Consider
J=m mk+l

mk+l- 1 -1/6

PC sup sup (2L2nk)- . X > A (L2nk)
mk<m~mk-l Ogt~l J--m

nk+ 1  mk+l-1 1

K PC sup I I X t) > % f2 (L2n k)")
m=mk  Ot l j--m

c(mk+l-mk)P(IUI > %ir 3 (1-e)k Lk).

Application of (2,5) and the Borel-Cantelli lemma gives the desired result. a

Lemma 4.2. Let nk be defined as above. Then, w.p.1 and for k sufficiently

large, we have

max sup Ifn(t) - f (t)l < E o n1 ).
nk<n nk+l Ot 1

Proof. From the definition of f we have
n

(4.1) max sup Ifn(t) - f (t)j l
nk<n~nk+l O~t~l n k

Ux sup I W(nt) % W(nkt)

nk<n~nk+ I O~t 1 (2nL2n) (2nkL2nk)

I W(nt) - W(nkt) +
max sup +

nk<nnk+1 Ot K1 (2nL~)

x2n kL2n
k )% s IW(nkt) I

nknnk+1  2nLn 1-1 supAmax~)l ~"~ O~t l (2nkL2nk)
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-1 -

From the definition of nk it follows that (nk+l-nk)nk+1 - -{p(k)}- . Using the

L.I.L. we have that the last term on the right hand side of (4.1) is less than

2{(k)}- 1 . Next we consider

P( max sup (2nL2n)
"A IW(nt)-W(nkt)l > eto(nk))

nknnk+1 Ot~l

P( sup sup IW(u+v) - W(v)I > l po(n k)(2L2nk)1 )

OMu l-h Ouh

-4/3using the scaling property of the Brownian motion where h - (log k) -  
. Now

we apply the estimate given in lemma 1.1.1 of Csdrgb and R6v6sz (1981) and the

Borel-Cantelli lemma in order to obtain the desired result. 0

The assertion in the last lemma gives us that we have only to show that

f is close to K.

Lemma 4.3. Take 6 > 0. Let nk and mk be defined as above. Then

11 mk fnkllH < + P5(nk) a.s.

for k sufficiently large.

Proof. It follows from the definition of I1111H that we have

r(I mk fnkl1H > 1 + r,(n)) = P( > (2L2n k)(1 + P6(nk) )

Applying lemma 2.2 we have that the summation of the probabilities converges.

The Borel-Cantelli lemma gives the result. 03

Now we can complete the proof for the upper bound. It follows from lemma

4.3 that in the events described in Pl.k and P2.k we have, for 6 > 0,

t li1.k 2.k=-
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1 - (L2nk)-1/6 llf fnkH 1 + (l+6 ),Po(nk) a.s.

We have

Plk P(do(fnK) > (1+6)*o(nk) A i f f K)

P(d (fnk, K)> (l+ 6 )4(nk) A 1 II f fnklH < 1 + (I + %6)4o(nk)) + rnk

where the error r is given in the proof of lemma 4.3.
nk

As we have seen in section 2 we can write

f(t) = mfm(t) + (2 ) - U ct)

where UmIkf k (t) and U k(t) are independent. In lemma 4.1 we showed that

(2 L2nk)- U mk(t) is small.

P~dof nk, K) > Cl+6),P nk) A 1 11U f nkll1 ( 1 + ( 1 +4 6)io(nk))

P(I 1 fnkllH 1) P((2L2 k) 'Alu k(1)] > % 6 +(nk))

1 7/6e CL2k ) 1/3L3k/3 -6 2 r2(L2k 2/ 8
=O(k' (Lk) e - J1w(k)/= €-1 7/6e )

by lemma 2.2 and estimate (2.5). Since I Pl,k < 0 the Borel Cantelli lemma
k

gives the desired result.

For the event considered in P2,k we define the stopping time M by

({=m} = {11 m"fnklH I 1 + Po(nk) ( II .m+lfnk 11H)

Then we have
P(M=m) = PC 2 2 n (1+,(k)2 2 U2 )

)IM~ L2 nk 01~(nK) ~ +s

where Y and U2 are independent and chi-square distributed with respect to m
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and 1 degrees of freedom.

If 17 mkf nk e K (Lnk)-l/6 we have M = m > N . The Borel-Cantelli

lemma gives us an upper bound for M.

P = P(1 - (L2 nk)- 1/6  1 7f 1 ,, 1_ , r/ f 1" < 1 + *o(n

-P(2L 2n~k(l-(L2nk)- 1/6 )2 2 2 X2 (2L2nk)(1+4Po(nk)) 2

P2 2<2nk _(nk-1/6)2 2 (( k 5/2 n-1/6 2

, P (c /, - 2 L2 rkl-L 2 nk)- )2 ) PB(' mk , ' m 2 - !A mk ) (l-(L 2nk)- )

by conditioning on )(2/2 and lemma 2.3 parts b and c

5/6 2/3 5Am/2L 2eL2 nkm/2

0Lk5/6- -1 2 (L2nk) e _(L2nk) ) jk (e m= O((Lk) /k-"" e e e )

% 5/2 1/6
-A -5/2 -Amk -mk)L((L2n

k ) /2)
"O(mk e mk  e )

by lemma 2.2 and computation of the probabilities of a beta distributed r.v.

It follows from the upperbound as derived above that

Pk <

The Borel-Cantelli lemma gives us that from now on we only have to consider

those values for M that are less than 5/2

m nk

have

d(1mf nkK) < Po0(nk)

and also

d n f-Pnk )
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Then we have proved the assertion for the upper bound. Consider

5/2

P = P(T mk f n K n K )-1/6 A M = m A

m mk nk l_(L 2nk

JXm.lml~t)lI > po~n k))

5/2
mk 2-7 P(km+I 2L2nk(l+qo(nk ))2 " P(B(!4.,&) ejmPo(nk))
M=N

k

2
by conditioning on 2 lemma 2.3 parts b and c and we also use that

2 2 2
km+l 2 k( 1+,Po(r k)) 2 (l+e)L2nk]. Using the estimates for X and beta

distribution we obtain 2 
< .

kk

Finally we consider

5/2

= k P(lI m f n CeK nK 1L -1/ 6 A Mm A
tmkk "kl 2nk)

II Um+l(-),( 2 L2 nk) 4o(nk))

5/2

Mk 2 2rk__*%)2)p uIT P( +R 2L2nkl+o(nk))2 )P( sup IUn.l(t)l > (2L2nk) (nk))
m=mk O~t~l

by the independence of the processes Urn+ 1 and V +1 . Using the lemmas 2.1 and

2.2 we obtain

IP * (* .

kk

5. Discussion and remarks.

All proofs of Strassen's theorem contain the following assertions.

i) There exists some sequence {nk} such that w.p.1 d.(fnnk ) < a for all

, ra Un~r ai n inue nlmlllnnkP~
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n e (nk.nk+l) and k sufficiently large.

ii) Let Im f be the piecewise linear approximation of f. Then, for fixed m,

w.p.l d.(17m f nkf) < for m.k sufficiently large.

iii) f;{- td mfn(01 dt has the same distribution as (2L2nk)'(m and is
2v

w.p.1 less than (1+e )2 for k sufficiently large. Thus the last assertion

implies [I mnk11H 1 + a w.p.1 for k large.

The projection IT as defined in section 2 is a different approximationm

than the one above. Above we have that TI f and f-I f are dependent. In them m

approximation used in sections 3 and 4 of this paper we have that

T7mfn = (2L2n)KV
m and fn -Umfn = (2L2n )  Um are independent.

As far as I know is m fixed in all proofs of the F.L.I.L.

Remark 1. In order to prove an integral test for the rate of convergence in

the F.L.I.L. one needs asymptotic expansions In lemma 2.1. The lower class

result becomes more difficult to prove.

Remark 2. For the Brownian bridge we have the following expansion

M

B(t) = I (klr)-lXk 2 sin (kwt) 0 t 1
k=1

where X1,X .... are i.i.d. N(O,1). See Shorack and Wellner (1986) chapter 1

exercise 15. By the same method as given in this paper one can obtain the rate

of convergence in Finkelstein's F.L.I.L. See Finkelstein (1971) or Shorack and

Wellner (1986) chapter 13 section 3 theorem 1.
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